SPOJ: AMR10E – Stocks Prediction

Problem Link : http://www.spoj.com/problems/AMR10E/


#include <bits/stdc++.h>

#define pii              pair <int,int>
#define pll              pair <long long,long long>
#define sc               scanf
#define pf               printf
#define Pi               2*acos(0.0)
#define ms(a,b)          memset(a, b, sizeof(a))
#define pb(a)            push_back(a)
#define MP               make_pair
#define db               double
#define ll               long long
#define EPS              10E-10
#define ff               first
#define ss               second
#define sqr(x)           (x)*(x)
#define D(x)             cout<<#x " = "<<(x)<<endl
#define VI               vector <int>
#define DBG              pf("Hi\n")
//#define MOD              1000000007
#define CIN              ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0)
#define SZ(a)            (int)a.size()
#define sf(a)            scanf("%d",&a)
#define sfl(a)           scanf("%lld",&a)
#define sff(a,b)         scanf("%d %d",&a,&b)
#define sffl(a,b)        scanf("%lld %lld",&a,&b)
#define sfff(a,b,c)      scanf("%d %d %d",&a,&b,&c)
#define sfffl(a,b,c)     scanf("%lld %lld %lld",&a,&b,&c)
#define stlloop(v)       for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define loop(i,n)        for(int i=0;i<n;i++)
#define loop1(i,n)       for(int i=1;i<=n;i++)
#define REP(i,a,b)       for(int i=a;i<b;i++)
#define RREP(i,a,b)      for(int i=a;i>=b;i--)
#define TEST_CASE(t)     for(int z=1;z<=t;z++)
#define PRINT_CASE       printf("Case %d: ",z)
#define LINE_PRINT_CASE  printf("Case %d:\n",z)
#define CASE_PRINT       cout<<"Case "<<z<<": "
#define all(a)           a.begin(),a.end()
#define intlim           2147483648
#define infinity         (1<<28)
#define ull              unsigned long long
#define gcd(a, b)        __gcd(a, b)
#define lcm(a, b)        ((a)*((b)/gcd(a,b)))

using namespace std;


/*----------------------Graph Moves----------------*/
//const int fx[]={+1,-1,+0,+0};
//const int fy[]={+0,+0,+1,-1};
//const int fx[]={+0,+0,+1,-1,-1,+1,-1,+1};   // Kings Move
//const int fy[]={-1,+1,+0,+0,+1,+1,-1,-1};  // Kings Move
//const int fx[]={-2, -2, -1, -1,  1,  1,  2,  2};  // Knights Move
//const int fy[]={-1,  1, -2,  2, -2,  2, -1,  1}; // Knights Move
/*------------------------------------------------*/

/*-----------------------Bitmask------------------*/
//int Set(int N,int pos){return N=N | (1<<pos);}
//int reset(int N,int pos){return N= N & ~(1<<pos);}
//bool check(int N,int pos){return (bool)(N & (1<<pos));}
/*------------------------------------------------*/



/*----------------------Matrix-----------------------*/

// int MOD=
ll MOD= 1000000007;

struct matrix
{
    ll mat[11][11];
    int row,col;

    matrix()
    {
        row=col=0;
        memset(mat,0,sizeof mat);
    }
    matrix(int a, int b)
    {
        row=a,col=b;
        memset(mat,0,sizeof mat);
    }

    matrix operator*(const matrix &p) const
    {
        assert(col == p.row);
        matrix temp;
        temp.row = row;
        temp.col = p.col;
        for (int i = 0; i < temp.row; i++)
        {
            for (int j = 0; j < temp.col; j++)
            {
                ll sum = 0;
                for (int k = 0; k <col;  k++)
                {
                    sum += ((mat[i][k]%MOD) * (p.mat[k][j]%MOD))%MOD;
                    sum%=MOD;
                }
                temp.mat[i][j] = sum;
            }
        }
        return temp;
    }
    matrix operator+ (const matrix &p) const
    {
        assert(row==p.row && col==p.col);
        matrix temp;
        temp.row=row;
        temp.col=col;
        for(int i=0; i<temp.row; i++)
        {
            for(int j=0; j<temp.col; j++)
                temp.mat[i][j]=((mat[i][j]%MOD)+(p.mat[i][j]%MOD))%MOD;;
        }
        return temp;
    }

    matrix identity()
    {
        matrix temp;
        temp.row=row;
        temp.col=col;
        for(int i=0; i<row; i++)
            temp.mat[i][i]=1;
        return temp;
    }

    matrix pow(ll pow)
    {
        matrix temp=(*this);
        matrix ret=(*this).identity();
        while(pow)
        {
            if(pow % 2==1)
                ret=ret*temp;
            temp=temp*temp;
            pow/=2;
        }
        return ret;
    }

    void show()
    {
        printf("-----------------------------\n");
        for(int i=0; i<row; i++)
        {
            for(int j=0; j<col; j++)
                printf("%lld ",mat[i][j]);
            printf("\n");
        }
        printf("-----------------------------\n");
    }

};

/*--------------------------Matrix End---------------------*/

matrix identity;

matrix func(matrix m, ll p)
{
//    if(p==0) return identity;
    if(p==1) return identity;
//
//    matrix ret=func(m,p/2);
//
//    matrix temp=m.pow(p/2);

    if(p%2==0)
    {
        return func(m,p/2)*(identity+m.pow(p/2));
    }
    else
    {
        return func(m,p-1)+m.pow(p-1);
    }
}

ll s[15],ara[15];

int main()
{

//    freopen("in.txt","r",stdin);
//	  freopen("out.txt","w",stdout);

    int t;
    sf(t);
    TEST_CASE(t)
    {
        ll n,r,k;

        sfffl(n,r,k);

        matrix base(r,1);

        ms(s,0);
        ms(ara,0);

        for(int i=1; i<=r; i++)
            sfl(s[i]);

        matrix a(r,r);

        for(int i=0; i<r; i++)
        {
            sfl(a.mat[0][i]);
            ara[i+1]=a.mat[0][i];
            if(i+1!=r)
                a.mat[i+1][i]=1;
        }

//        base.show();

//        a.show();

        a=a.pow(k);

//        a.show();

//        base.show();

        identity=a.identity();

        a=func(a,n);

//        a.show();

        ll ans=0;

        if(k>r)
        {
            for(int i=r+1; i<=k; i++)
            {
                for(int j=1; j<=r; j++)
                {
                    s[i]+=s[i-j]*ara[j];
                    s[i]%=MOD;
                }
            }

            for(int i=0; i<r; i++)
            {
                ans=(ans+(s[k-i]*a.mat[0][i])%MOD);
                ans%=MOD;

            }

        }
        else
        {
            for(int i=0; i<r; i++)
            {
                ans=(ans+(a.mat[r-k][r-i-1]*s[i+1])%MOD);
                ans%=MOD;
            }

        }
        pf("%lld\n",ans);

    }

    return 0;
}

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s